Description of Eye Level Basic Thinking Math Curriculum

Summary

Students learn to write numbers correctly and learn numbers from 1 to 10 . Since these are the basics of learning numbers, students should be allowed to continue their study until students can count numbers intuitively.

Students can read and write numbers correctly and learn numbers from 11 to 30 . Using semi solid objects to make 10, students are taught to understand complements. Numbers above 10 will be expanded through grouping until numeric progression is completely established through 30.

Students learn the numerical order by expansion of numbers up to 120 and the addition of 1,2 , and 3 .
Practicing Adding 1, 2, and 3 (2) \quad Subtracting 2 \quad Practicing Subtracting 1, 2, and 3

5

Making Numbers
Addition with Sums up to 10
Addition Facts (1)

6

Addition of Three 1-Digit

By studying adding 1, 2, and 3, the numerical order up to 120 is covered. Learning in this section is checked through verbal testing. Also, students study subtracting 1,2 , and 3.

Students learn how to make numbers, and they develop skills in mental arithmetic by constructing and reviewing the addition table.

Students develop mental addition skills at this level. Arithmetic skills are practiced to enable students to mentally calculate solutions to addition problems with renaming.

Level		Samples	
7	(2) There are 19 loaves of bread and 5 cakes. How many loaves of bread and cakes are there? Addition of 1-Digit Numbers to 10-19	$\begin{array}{rrr} 9+2+9 & 7 & 12 \\ 9+5+8 & +9 \\ \hline \end{array}$ Addition of Three 1-Digit Numbers \mathbb{I}	$\begin{aligned} & 18+9 \\ & 12+12+9 \\ & +\quad 8 \\ & \hline \end{aligned}$ Reviewing Addition
8	$\begin{aligned} & 9-6=\square \\ & 8-6 \\ & \text { Subtraction with Minuends } \\ & \text { from } 2 \text { to } 10 \end{aligned}$	$5-3=$ $13-4=$	$\begin{array}{rrr} 7-6 & 12 & 13 \\ 10-6 & -8 & -8 \\ 11-6 & -10 & 9 \\ 8-6 & -8 & -8 \\ 9-6 & & \end{array}$
9	$\begin{array}{r} 20-6 \\ 21-6 \\ 21 \\ \hline \end{array} \begin{array}{r} 23 \\ \hline \end{array}$ There were 21 apples in the basket. If Thomas ate 3 apples, how many apples are left in the basket? Subtraction of 1-Digit Numbers from 2-Digit Minuends from 10 to 23	$\begin{aligned} & 19-13 \\ & 23-12-\frac{22}{20} \\ & \hline \end{aligned}$ Subtraction of 2-Digit Numbers (without regrouping)	$\begin{aligned} & 13-8-2 \\ & 21-10-5 \end{aligned}$ Subtraction of Three Numbers
10	There are 58 children's books and 25 history books in Vicky's room. How many books are there in Vicky's room altogether? Addition with Sums up to 99	$\begin{aligned} & 42 \\ & +74 \\ & \hline \begin{array}{r} 74 \\ \\ \hline 64+45 \\ \\ \hline 87+95 \end{array} \begin{array}{r} 59 \\ \hline 78 \\ \hline \end{array} \\ & \hline \end{aligned}$ Addition of 2-Digit Numbers	
11	$\begin{array}{r} 36 \\ -\quad 3 \\ \hline 28-95 \\ \hline \end{array}$ Subtraction of 2-Digit Numbers	$\begin{aligned} & 33+46+7 \\ & 43-9-7 \end{aligned}$ Addition and Subtraction with Three Numbers	(2) Janice has 124 beads. She used 85 of them to make a necklace. How many beads does she have left? Subtraction of 3-Digit Numbers
12	$\begin{array}{rrr} 2 \times 1 & 5 \times 9 & 8 \times 1 \\ 2 \times 2 & 5 \times 8 & 8 \times 4 \\ 2 \times 3 & 5 \times 7 & 8 \times 8 \\ 6 & 7 & \\ \times 4 & \times 0 & \times 5 \\ \hline \end{array}$	In the Group Running event, there are 4 people on each team. If 8 teams competed in this event, how many people participated? Multiplication of 1-Digit Numbers by Other 1-Digit Numbers	17 $\times \quad 5$ 318 $\times \quad 3$ $\times \quad 42$19 $\times \quad 6$ $\times \quad 9$ Multiplication of 2-Digit Numbers by 1-Digit Numbers (1)
13	All the third grade students in Jimmy's school are going on a field trip. If 28 students can ride in one bus, how many students can ride in 5 buses? Multiplication of 2-Digit Numbers by 1-Digit Numbers (2)	100×9 \times323 $\times \quad 3$ 583 Multiplication of 3-Digit Numbers by 1-Digit Numbers	$\begin{array}{r} 20 \\ \times 9030 \times 70 \\ \times 54 \\ \hline 85 \\ \times 28 \\ \hline \end{array}$ Multiplication of 2-Digit Numbers by Other 2-Digit Numbers
14	$18 \div 2$ $5 \longdiv { 5 }$ $6 \longdiv { 5 4 }$ (3) Dave has 24 cucumbers. If he wants to put 6 cucumbers in each container, how many containers does he need? Understanding Division	(3) The tricycle shop has 19 wheels. Since each tricycle needs 3 wheels, how many tricycles can be assembled and how many wheels will be left? Division with Remainders	$\begin{aligned} & 8 \longdiv { 9 6 } \quad 8 \longdiv { 9 5 } \\ & 7 \longdiv { 3 9 } \\ & 49 \div 6 \quad \square \times \square+\square \\ & 76+7=\square \end{aligned}$ Division of 2-Digit Numbers by 1 -Digit Numbers

Students review the addition table for complete understanding of (2 digits up to 19) + (1 digit), and they practice mental arithmetic to increase their skills of answering intuitively.

Students study the subtraction table until intuitive answers can be given. Students should be able to understand that subtraction and addition are inverse arithmetic functions. This level develops mental arithmetic skill of subtraction.

Students are enabled to give intuitive answers by understanding the concept, theory and method of (2-digit)-(1-digit) subtraction. This level completes the mental arithmetic of subtraction.

Students develop mental addition skills by practicing 2-digit addition, without written regrouping.

Students develop mental subtraction skills by practicing 2 -digit subtraction, without written regrouping.

Students learn the relationship between the accumulation of the same number and multiplication. Students become more familiar with the multiplication table and master the fundamental process of multiplication.

Students learn the method of multiplying (2-digit) x (1-digit) numbers, and the skill of regrouping through mental calculations.

Students become familiar with the division table and master the fundamental process of division.

15	$4 \longdiv { 4 3 9 }$	$4 \longdiv { 7 2 0 }$
$574 * 7$	$959 \div 4$	

15
$5 8 \longdiv { 2 3 8 }$
$7 9 \longdiv { 4 1 7 }$
(2) 4,800 people want to visit Mars. If the spaceship can carry 40 people on each trip, how many trips will it
take to let everyone visit?
(2) All 5,428 students in Margaret's school are going on a trip. If 40 students can ride on each bus, how many buses are needed for the trip?
Division by 2-Digit Numbers

Division by 2-Digit Numbers

0.2		3126		0.52		$0.062 \div 6$		Find the comparing amounts.		
$\times 54$	\times	23		0.21	$23.5 \div 1000$			$\frac{1}{x} \text { at } 24$		5\% od 400
138×0.004	400×0.0085				$3 7 \longdiv { 6 9 9 3 }$	$5 6 \longdiv { 2 1 }$	123)	105 a 500		

Multiplication of Decimals

Division of Decimals
Ratios

$x=13=25$	$75 \times x=15$	(1) Solve for x.	Find the perimeter and area of the shaded section.
	$(x-9)+2-7$	$4: 7=2: x \quad \frac{2}{3}=3+31: x$	
$\left(x+2 \frac{6}{7}\right)=3 \frac{1}{3}$	$(5 \times 35)=175$		
$x+2 \frac{5}{7} \times 2.3=9 \frac{1}{5}$	$x+1 \frac{3}{7}+1.7=5 \frac{1}{2}$	$\frac{1 i}{5} 10.63=51 x$	$9 \mathrm{~cm} 9 \mathrm{~cm} \quad 20 \mathrm{~m}$
Equations		Equivalent Ratios	Application of Arithmetic IV

23

Basic Operations with Whole Numbers, Fractions, and Decimals

Students continue their study of division by practicing with 2 -digit divisors. Attention is given to both the speed and accuracy of calculations.

Students practice performing the correct order of the four arithmetic operations in compound problems. Units of measurement will also be studied.

Students will learn the meaning of 'fraction' and complete the addition and subtraction of fractions having the same denominator.

Students will learn the meaning of 'decimal' and become familiar with reducing fractions based on multiplication and factoring.

After learning how to reduce fractions, students will learn addition and subtraction of fractions having different denominators.

Students will learn about addition and subtraction of three fractions having different denominators. Students will also learn how to multiply and divide fractions.

Students will learn to that multiplication and division of decimals are the same as for natural numbers, and they will practice placing decimal points in solutions. Ratios will also be studied.

Students will solve equations and practice solving equivalent ratios. Circular geometry will also be covered.

Students will develop their skills with fractions and practice compound calculations involving the four arithmetic operations. Students will also learn how to convert units of measurement and determine the surface area and volume of three dimensional objects.

Level		Samples		Summary
24	(4) Find the prime factorizations of the following numbers. (1) 42 (2) 108 Find the number of factors for the following numbers. (1) \qquad \qquad (2) $2^{2} \times 3^{2}$ Prime Factorization	In the Venn diagrams below, shade the areas of the omplementary sets (1) A^{C} (2) $(A \cap B)^{c}$ Sets	- Fill in the boxes and circle the correct property used.	Students learn about prime factors by understanding divisors, multiples, decimals, fractions, and composite numbers. Students learn about set theory and computations related to sets. Students also gain greater understanding of the properties of rational numbers and operations with rational numbers.
25	(2) This figure has an area of $\boldsymbol{A} \mathrm{cm}^{2}$. (1) Express the area A in terms of a, b, and h. (2) If $a=5 \mathrm{~cm}, b=7 \mathrm{~cm}$, and $h=3 \mathrm{~cm}$, what is the area of the figure? Evaluating Expressions	The following is solved by using the Properties of Equality. Write the number of the Properties of Equality above, (I)-(V), that was used. (1) 2 $2 x-3=5$ (2) $\frac{1}{4} x+3=1$ $\begin{aligned} 2 x & =8 \\ x & =4\end{aligned}$ $\left.\begin{array}{rl} \frac{1}{x} x+3 & =1 \\ \frac{1}{4} x & =1-3 \end{array}\right] \square$	Plot the following points on the coordinate plane. Functions and Their Graphs (1)	Students learn to solve the four arithmetic operations of rational numbers and linear equations based on understanding the property of equality. Students learn the definition of domain and range using the concepts of equal or above, equal or below, above and below to mark coordinates on a perpendicular line.
26	Look at the graph on the right and find the equation for the unction. © Functions and Their Graphs	Find $\mathrm{m} \angle x$ in the following figures. © (1 Polygons	Find the surface area and volume of each of the following solid figures. Surface Area and Volume of Solid Figures	Students learn to find the relationships of directly proportional and inversely proportional functions and to draw graphs by understanding the concepts of function. Students learn about relative frequencies, cumulative frequencies, and positional relationships between lines and planes on flat planes or in space. Students will also learn about congruence of triangles; the properties of triangles, circles, and sections; and how to find surface areas and volumes of solid figures.
27	(3) Simplify the following expressions. 6 -kerlin $16 x^{3} y^{4} \div(-2 x y)^{2}$ (6) +hater 불 $\frac{5}{6} x^{5} y \div \frac{10}{21} x^{5} y^{3}$ -otron- Multiplication and Division of Monomials	If $x=4$ in $4 x-2 y=12$, what is the value of \boldsymbol{y} ? The graph of $-4 x+3 y-5=0$ passes through two points, $\mathbf{A}(2 \boldsymbol{a},-1)$ and $\mathbf{B}(4, \boldsymbol{b})$. What is the value of $\boldsymbol{a}-\boldsymbol{b}$? Linear Equations with Two Variables	Solve the following systems of equations. - $\left\{\begin{array}{l}x+y=3 \\ x+3 y=\end{array}\right.$ (2) $\left\{\begin{array}{l}3 x+2 y=8 \\ 3 x-y=2\end{array}\right.$ Solve the following systems of equations. - $\left\{\begin{array}{l}y=4 x-3 \\ -5 x+2 y=6\end{array}\right.$ (3) $\left\{\begin{array}{l}x=2.5 y+\frac{1}{4} \\ -4 x+7 y=2\end{array}\right.$ Systems of Equations	Students learn about approximate values and how to solve addition, subtraction, multiplication and division of monomials and polynomials by understanding the law of exponents. Students also learn to solve linear equations and systems of equations containing two variables.
28	If the number of solutions to the system of equations $\left\{\begin{array}{l}a x+7 y=-3 \\ -9 x-14 y=-b\end{array}\right.$ is infinite, find the value of $a+b$. Systems of Equations (2)	Parallelogram ABCD on the right has a base of $8 \mathrm{~cm}(\mathrm{AD}=8 \mathrm{~cm})$. $48 \mathrm{~cm}^{2}$, what is its maximum height? Linear Inequalities	A graph of $\boldsymbol{y}=\boldsymbol{a} x+\boldsymbol{b}$ is shown on the right. Suppose this graph is parallel to the straight line given by $\boldsymbol{k} x-4 \boldsymbol{y}+2=0$. Find the value of \boldsymbol{k}. Linear Functions and Their Graphs	Students learn about systems of equations in which the coefficients are decimal or fractional. Students learn about inequalities and the concepts of linear functions, graphs, slopes, and intercepts. Students also learn to solve various forms of linear inequalities and systems of inequalities. Students learn about probability by understanding the meaning of possible values.
29	In the figure shown on the right, it can be proven that $\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$. Fill in the boxes. Properties of Isosceles Triangles	In the figures below, \mathbf{O} is the circumcenter of $\triangle \mathrm{ABC}$, and point I is the incenter of $\triangle \mathrm{ABC}$. Find $\mathrm{m} \angle x$. Circumcenter and Incenter of a Triangle	Point G is the centroid of $\triangle \mathrm{ABC}$. Find the value of x. - - Applications of Similarity	Students leam about probabilities and statements. Students learn to solve a variety of geometric problems by learming the properties of various triangles and squares. Students learn to draw similar figures and understand conditions of similarity of triangles. Students learn to solve problems by applying the properties of similarity in triangles.
30	Given square OABC with an area of 5 , if point D is on the number line such that $\mathbf{O C}=\mathbf{O D}$, then find the coordinates of point D. Irrational Numbers	Rationalize the denominator of each of the following expressions. (1) $\frac{8}{\sqrt{5}-\sqrt{3}}$ (2) $\frac{\sqrt{3}-\sqrt{2}}{2 \sqrt{2}-\sqrt{3}}$ Multiplying Polynomials		Students learn the concepts of irrational and real numbers based on square roots, and they learn to expand polynomials using the distributive law and the product rule. Students will also learn to factor various equations by understanding factoring and perfect-square expressions. Students will become familiar with new forms of quadratic equations and learn how to solve them.
31	Suppose $y=a(x-p)^{2}-q$ is as shown on the right. Find the signs of $\boldsymbol{a}, \boldsymbol{p}$, and \boldsymbol{q}. Quadratic Functions and Their Graphs	Find the maximum or minimum value for the following functions. (1) $y=5 x^{2}-10 x+6$ (2) $y=-\frac{1}{4} x^{2}+8 x-4$ The quadratic function $\boldsymbol{y}=\boldsymbol{x}^{2}+5 \boldsymbol{a} \boldsymbol{x}-6 \boldsymbol{b}$ has the minimum value of 7 when $x=3$. Find the value of $\frac{\boldsymbol{b}}{\boldsymbol{a}}$. Maximum and Minimum Values of Quadratic Functions	Find the length of diagonal l in the following. (1) \% 2 rectangle Applications of the Pythagorean Theorem (1)	Students learn to solve quadratic equations using the quadratic formula, and they learn to solve various quadratic equations in which the coefficients are fractional or decimal. Students also learn how to solve various problems by applying the properties of quadratic functions. Students learn how to find the lengths of segments and the areas and volumes of plane figures using the Pythagorean Theorem.
32	In the rectangular prism shown on the right, find the shortest route that starts at point \mathbf{A}, and reaches point \mathbf{G}. Applying the Pythagorean Theorem	In the figure shown on the right, circle O is an inscribed circle of $\triangle \mathrm{ABC}$. What is the length of $\overline{\mathbf{B Q}}$? (1) 4 cm (3) 4 cm (2) 5 cm (3) 6 cm (5) 8 cm Examining Circles	The elevation angle looking up from point \mathbf{A} to point \mathbf{C}, which is at the top of an apartment building, is 40°. If the distance from point \mathbf{A} to point B is 100 m , find the height of the apartment building. $\left(\tan 40^{\circ} \approx 0.84\right)$ Applying Trigonometric Ratios	Students learn how to solve various problems involving two dimensional and three dimensional figures using the Pythagorean Theorem. Students learn about arcs, chords and positional relationships of two circles. Students also learn about inscribed angles, central angles, tangent lines, and chords, and a circle and a proportion. The meaning of trigonometric ratios, trigonometric ratios of a complementary angle and the relationship between three trigonometric ratios will also be examined.

Description of Eye Level Critical Thinking Math Curriculum

LeVel

Summary

This level focuses on the study of increasing patterns involving size, type, color, direction, and number.
Students learn to find numbers that skip by 5 , and they learn these three-dimensional shapes: cubes, columns, and ball-shaped objects. Also, students learn about conservation of width.

Students learn to find number patterns by viewing diagrams, and they learn to find numbers that skip by 3. Students learn the basic symmetry of shapes by identifying shapes and dividing them into parts. By dividing shapes into parts, students develop their spatial skills and a greater understanding of fractions.

Students learn to recognize patterns with lines, shapes, and dominos while numbering and dividing shapes. Students learn to divide objects into four parts. Students also develop their skills of observation and reasoning by analogy by manipulating shapes given in diagrams.

Students use mirrors to learn about symmetry. They learn basic concepts related to parallel movement, symmetrical shapes, and lines of symmetry in linesymmetrical shapes. Also, students learn about conservation of area.

At this level, 'counting blocks' are used to develop spatial skills. Rotary movement is also examined through changing the orientation of shapes. Conservation of volume is studied by transferring liquid among various containers.

Students learn to count the number of quadrangles of different sizes and various shapes within diagrams. Students learn to solve problems by particular methods that fit given situations, choosing from finding patterns, using data tables, drawing diagrams, and deductive reasoning. Recognizing changes of pattern within diagrams reinforces the skill of learning by analogy.

Through the movement of shapes, activities at this level reinforce basic concepts related to parallel movement and symmetrical movement. By finding the original shape which has been rotated in the direction of an arrow, students learn the basics of rotary movement.

Students learn to recognize and use patterns of shapes and numbers to solve problems. Students also learn to transform figures and solve problems using diagrams.

Level		Samples	
15	Every exposed face of the blocks below was painted. How many faces were painted. Counting Blocks	Balance 1 and Balance 2 are level. How many kittens have to be put on ' A ' to make Balance 3 level? \qquad Problem Solving by Deduction	Four animals were weighed and the following result was obtained. Read the following statements and write the names of the animals in the boxes in order from the heaviest to the lightest. Understanding Word Problems
16	The front, side, and top views of a block are given. Circle the correct block. Recognizing Different Views of Blocks	(27) There are 3 ways to go from the house to the store and 2 ways to go from the store to the school. How many different ways can you go from the house to the school via the store? Problem Solving by Tree Diagrams	Look at the following conditions and set of numbers. Answer the questions. Recognizing Appropriate Numbers
17	Find all the lines that will form matching halves when the figure is folded along the lines. Congruency and Symmetry	Find the pattern in the following set of problems. Write the correct number in each \square. Problem Solving by Pattern Recognition	Write all the numbers belonging to C . A Nereviention antinfaritan cutyon 4 nintitatinn Solving Problems Using Venn Diagrams
18	Using line $A B$ as the line of symmetry, complete each line-symmetrical figure. Line Symmetry	Jessica shot 5 arrows and the arrows hit the $10,9,8$, and 7 point rings. Write all the possible scores she can get. Problem Solving by Data Analysis	A teacher asked students to bring a comic book or a history book to class. Write "True" or "False" in each \square Evaluating Statements
19	Using the given point as the point of symmetry, complete each point-symmetrical figure. Point Symmetry	Mindy has been reading a book. How many pages are there in the book? \square Itillilhospernity the mill les of tere nepe beet Problem Solving by Reverse Calculation	Draw a triangle that is congruent to the one shown below. Problem Solving by Trial and Error
20	Find the number pattern and complete the table. Then use $\overline{\#}$, and number operations to show the number relationship. Number Relationships	How many marbles will be needed to create the pattern shown below if the bottom row has 29 marbles? Problem Solving by Pattern Recognition	Andy, Brad, and Cathy each had some marbles that they redistributed among themselves. Each person now has 30 marbles. How many marbles did Andy have in the beginning? \qquad \qquad \qquad \Rightarrow Above conclusion is (reasonable, not reasonable). Logic
21	Complete the function table and write the equation. $\pi=$ \qquad Functions	- Circle the solid figure that is drawn correctly. Understanding Solid Figures	Magnify the figure by drawing a similar figure with sides that are twice as long. Then draw another similar figure with sides that are $\frac{1}{2}$ as long as the original figure. Similar Figures
22	Read the graph and complete the coordinates in the table. Then write the equation relating y to x. Functions	Draw the figure that would produce the given rotational solid figure. Rotation of Figures	In the following table, each type of ball represents a different unknown number. Each row and column will add up to the number at the right or bottom. Fill in each \square. Problem Solving by Deduction
23	Write the numbers from 2 to 7 once so that each side of the triangle has a sum of 14 . Fill in each \bigcirc. Problem Solving by Alternative Methods	Josh has a magic box. He used this box twice after she put in an initial amount of money and got $\$ 85$ in return. Fill in each \square Reviewing Methods of Problem Solving	For the class meeting, Maria, Jason, Emma, and Zack are sitting as the statements describe. Read the following statements and answer the questions. Analyzing Word Problems

By finding the number of counting blocks, students determine the volume of three-dimensional figures.
Also, by finding the number of painted counting blocks, students determine the surface area of threedimensional figures.

By examining the pattern of how the number of objects increases by 2 or 3 , students learn to calculate the number of objects. Students also learn to find the shape of a single, three-dimensional block by viewing it from the front, side, and top.

Students learn to recognize number patterns by counting objects and filling in missing values. Students determine the three-dimensional shape of a figure constructed from two blocks by viewing it from the front, side, and top, and they study the line symmetry of shapes.Through the use of Venn Diagrams, students learn the basic concepts of intersection and union.

Students learn to find and draw symmetrical figures using lines of symmetry. Students also learn to evaluate statements by analyzing sentences or phrases connected with "and" and "or"

Students determine the three-dimensional shape of a figure constructed from three blocks by viewing it from the front, side, and top. Students learn to find and draw a symmetrical figure using a point of symmetry.
Students also learn strategies of problems solving, such as drawing diagrams, using reverse calculations, trial and error, and deductive reasoning.

Students learn to determine the three-dimensional shape of a figure constructed from four blocks by viewing it from the front, side, and top. Students also learn to verify a result obtained by applying two premises by drawing a Venn Diagram or analyzing a sentence.

Students learn to complete correspondence tables by comparing the related expressions of X and Y, and they then learn the relational expression of X and Y. Students learn to magnify and reduce figures by drawing similar figures. Students also learn to analyze and evaluate two or three given statements by using various methods.

Students learn to determine the coordinates of a point and write expressions relating X and Y. Students also learn to use the basic dimensions of three-dimensional objects to calculate surface areas and volumes.

Students learn about direct and inverse proportions and how to determine a proportionality factor using the relationship between X and Y. Students study the construction and rotation of solid figures. Students also learn problem solving strategies and how to analyze a problem and its solution.

Level		Samples		Summary
24	For the octahedron below, find the value for each box using each of the following numbers only once so that the sum of the values for the 3 edges of each surface equals 20 . $2,3,5,6,7,8,10$ The Magic of Numbers	Divide the given figure with a line so that the sum of the numbers on each side of the line is equal. (Answers may vary.) Square Games	The time shown is between 9:00 and 10:00. Find the time when the angle between the hour hand and the minute hand is 180°. Clock Angles	Students learn basic equations through Magic Squares, Square Games, and The Magic of Numbers. Understanding the angles between the hour hand and the minute hand, students learn how to solve difficult problems related to the angles of a clock.
25	The following is a table of gas prices with full-service and elf-service options at the South End Station and West End Station. (1) Write an expression that shows the relationship between the amount of gas $x(\mathrm{~L})$ and the price $\mathrm{P}(\$)$ for each gas station. Fuel Consumption		Refer to the following stem and leaf plot to complete the frequency table and answer the questions below. Stem and Leaf Plots	Students study linear equations through various applications closely related to daily life, such as speed, time, fitness center, and fuel consumption. Students learn how to arrange and analyze data using stem and leaf plots.
26	If the figure can be changed by moving only one oothpick at a time according to the Rules on page 3 , which of the following cards cannot come either before or after the one shown on the right? The Geometry of Toothpicks	According to the given Conditions, draw a quadrilateral and a hexagon using the indicated pegs as vertices. Geoboards I	Use all 5 tetrominoes shown in the box, once each, to make the following figures - - Polyominoes	Students gain interest in geometry through using common materials such as toothpicks and matches. Students' curiosity and motivation for learning increase as well as understanding of spatial relations through using various teaching tools, such as Geoboards and Polyominoes.
27	Use the numbers 1 through 49 once each, and complete the following 7×7 magic square using the pyramid method. Magic Squares II	Find the perimeter of the figures made by lining up the sides of squares with sides measuring 1 adjacent to one another. (1) Fi Find the perimeter when there is one square \square (2) F Find the perimeter of the figure made by lining up the sides of two squares adjacent to each other Various Problems II	The rectangular piece of paper shown below has a length of n and a width of 3 . If the paper is cut into 1×1 squares, 128 squares can be made. Find the value of \boldsymbol{n}. 1) When the length is 3 and the width is 1 , how many squares can be made? Various Problems II	Students learn the properties of numbers through number puzzles and calculators. Students learn how to solve problems using given conditions and applying systems of equations to calculate calories from food consumed.
28	Group letters connected by lines to form GEOMETRIC on the diagram below. Find the number of times each letter is used and write the number in the corresponding circle. Using the results, find the sum of the numbers that follow. Pascal's Triangle	If the numbers from 1 to 9 are placed, once each, into the figure shown on the right, find the sum of the numbers in to be 4 times the sum of the numbers in \square. Find the probability that the numbers in \square are consecutive numbers. (The order of the numbers does not matter.) Problems Involving Probability and Statistics	In the picture below, connect the midpoints of each side of the non-shaded equilateral triangles and shade in the central equilateral triangles formed by these segments. The Sierpinski Triangle	Students learn how to solve various systems of equations related to daily life, such as determining the possibilities of various events occurring in students' lives and probabilities using Pascal's Triangle. Students also examine fractals through Sierpinski Triangles and try to find rules for them.
29	Divide the figure below into four P -shaped ($⿴$) Thinking Pentos. \square Dissection of Polygons	Write the missing letter in the correct square of the following nets so that the letters \mathbf{M} and \mathbf{A} are oriented in the same direction as on the cube shown on the right when the net is folded - © Nets of Cubes I	Let's make the $5 \times 2 \times 2$ rectangular prism shown on the right. Answer each of the following. (1) How many Thinking Cubes are needed to make the solid figure above? Soma Cube	Students develop spatial skills and their ability to solve problems by dividing figures or constructing figures. Students practice visualizing in three dimensions and two dimensions by constructing regular hexahedrons. Students also improve their sense of space by playing games with seven-piece Thinking Cubes.
30	Find the approximate value of $\sqrt{2}$ using the numbers on Number Board \mathbf{R}. Use $49=7^{2}$ and $25=5^{2}$ to find the approximate value of $\sqrt{2}$. The Rules in Numbers	Use the method on pages 5 and 6 to find 7 consecutive composite numbers of natural numbers. (1) If If the smallest number in the set of 7 consecutive composite numbers in order. Number Stories	Bonnie's uncle is trying to find the length of wire he needs to build a circular fence. Find each of the following. (1) If the radius of the circular fence is $x \mathrm{~m}$, write an expression for the area of the circle. Math on a Green Field	Students learn to concepts of irrational numbers, composite numbers, prime numbers, and perfect numbers. Students also learn the relationships among the number of sides, perimeters, and areas of regular polygons and equations.
31	What is the value of the $\boldsymbol{n}^{\text {n }}$ term in the following sequences? () $-1,2,9,20,35,54, \ldots$ (2) $1,3,6,10,15,21, \ldots$ Rules and Sequences	D. Draw a box and whisker plot for each of the following data sets Box and Whisker Plots	As before, draw equilateral triangles from the trisection points of each side and erase the bases as you did in Step 1. Koch Curves, Koch Snowflakes, and Zigzags	Students learn the concept of sequence to the n-th term. Students also learn how to interpret and analyze data using box and whisker plots, as well as learning about logical sums and logical products. Students review the concept of similarity using Koch Curves and Koch Snowflakes.
32	Add 3 adjacent squares to the figure shown on the right to make its perimeter first as long as possible and then as short as possible. Show each case on the figures below. The length of the sides of the square is 1 . Transformation of Figures	Find the shortest distance of a solid figure made by placing 1 cm cubes side by side. (1) Find Find the shortest distance for connecting A to B, B to C , and C to D along the right. or the solid figure shown on the Exploring Solid Figures	Make the area of the $(2,5,2)$ tile board shown on the right equal $15 \mathrm{~cm}^{2}$. (1) If $x=2$, find the value of y. (2) If $y=1$, find the value of x. Figures and Factoring	Students learn about congruous transformations, similarity transformations, and symmetric transformations by examining transformations based on the perimeters and areas of figures. Students learn how to find perimeters, areas, and the shortest distances of solid figures using factoring.

